Positive solution for a fractional singular boundary value problem with p-Laplacian operator
نویسندگان
چکیده
منابع مشابه
Positive Solution for Boundary Value Problem of Fractional Dierential Equation
In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.
متن کاملPositive solution for boundary value problem of fractional dierential equation
In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.
متن کاملPositive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation with p-Laplacian Operator
We consider the existence and multiplicity of concave positive solutions for boundary value problem of nonlinear fractional differential equation with p-Laplacian operatorD 0 φp D α 0 u t f t, u t , D 0 u t 0, 0 < t < 1, u 0 u ′ 1 0, u′′ 0 0, D 0 u t |t 0 0, where 0 < γ < 1, 2 < α < 3, 0 < ρ 1, D 0 denotes the Caputo derivative, and f : 0, 1 × 0, ∞ × R → 0, ∞ is continuous function, φp s |s|p−2...
متن کاملPositive Solutions for Three-Point Boundary Value Problem of Fractional Differential Equation with p-Laplacian Operator
We investigate the existence ofmultiple positive solutions for three-point boundary value problemof fractional differential equation with p-Laplacian operator −Dt β (φp(Dt α x))(t) = h(t)f(t, x(t)), t ∈ (0, 1), x(0) = 0,Dt γ x(1) = aDt γ x(ξ),Dt α x(0) = 0, where Dt β ,Dt α ,Dt γ are the standard Riemann-Liouville derivatives with 1 < α ≤ 2, 0 < β ≤ 1, 0 < γ ≤ 1, 0 ≤ α − γ − 1, ξ ∈ (0, 1) and t...
متن کاملExistence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2018
ISSN: 1687-2770
DOI: 10.1186/s13661-018-0972-4